Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\vec{a}=(\hat{i}+\hat{j}+\hat{k}), \vec{a} \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then $\vec{b}$ is
MathematicsVector AlgebraVITEEEVITEEE 2018
Options:
  • A $\hat{i}-\hat{j}+\hat{k}$
  • B $2 \hat{j}-\hat{k}$
  • C $\hat{i}$
  • D $2 \hat{i}$
Solution:
1885 Upvotes Verified Answer
The correct answer is: $\hat{i}$
$\because(\vec{a} \times \vec{b}) \times \vec{a}=(\vec{a} \cdot \vec{a}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{a}$ $\therefore \quad(\hat{j}-\hat{k}) \times(\hat{i}+\hat{j}+k)=(\sqrt{3})^{2}(\vec{b})-(\hat{i}+\hat{j}+k)$ $\Rightarrow 3 \hat{b}=3 \hat{i} \Rightarrow \hat{b}=\hat{i}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.