Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathbf{a}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+t \hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$, then the values of ' $t$ ' for which (a+b) and (a-b) are perpendicular, are
MathematicsVector AlgebraAP EAMCETAP EAMCET 2001
Options:
  • A $\pm 2$
  • B $\pm 2 \sqrt{3}$
  • C $\pm 3 \sqrt{2}$
  • D $\pm 3$
Solution:
2004 Upvotes Verified Answer
The correct answer is: $\pm 2 \sqrt{3}$
We have,
$\begin{aligned} \mathbf{a}+\mathbf{b} & =(\mathbf{i}+\mathbf{j}+t \mathbf{k})+(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \\ & =2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+(t+3) \hat{\mathbf{k}}\end{aligned}$
and
$\begin{aligned} \mathbf{a}-\mathbf{b} & =(\hat{\mathbf{i}}+\hat{\mathbf{j}}+t \hat{\mathbf{k}})-(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}) \\ & =-\hat{\mathbf{j}}+(t-3) \hat{\mathbf{k}}\end{aligned}$
Since, $(\mathbf{a}+\mathbf{b})$ and $(\mathbf{a}-\mathbf{b})$ are perpendicular to each other, then
$(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=0$
$\begin{array}{cc}\Rightarrow & {[2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+(t+3) \hat{\mathbf{k}}] \cdot[-\hat{\mathbf{j}}+(t-3) \hat{\mathbf{k}}]=0} \\ \Rightarrow & 0-3+t^2-9=0 \\ \Rightarrow & \quad 0\end{array}$
$\Rightarrow \quad t^2=12 \Rightarrow t= \pm 2 \sqrt{3}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.