Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $a_{i j}=\frac{1}{2}(3 i-2 j)$ and $A=\left[a_{i j}\right]_{2 \times 2}$, then $A$ is equal to
MathematicsMatricesJEE Main
Options:
  • A $\left[\begin{array}{cc}1 / 2 & 2 \\ -1 / 2 & 1\end{array}\right]$
  • B $\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 2 & 1\end{array}\right]$
  • C $\left[\begin{array}{cc}2 & 2 \\ 1 / 2 & -1 / 2\end{array}\right]$
  • D None of these
Solution:
2928 Upvotes Verified Answer
The correct answer is: $\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 2 & 1\end{array}\right]$
$\Rightarrow a_{11}=1 / 2, \quad a_{12}=-1 / 2$ and $a_{21}=2, a_{22}=1$
$\therefore \quad A=\left[a_{i j}\right]_{2 \times 2}=$ $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$
$\therefore \quad A=\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 2 & 1\end{array}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.