Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A$ is a $3 \times 3$ matrix such that $|5 \cdot \operatorname{adj} A|=5$, then $|A|$ is equal to
MathematicsMatricesKCETKCET 2022
Options:
  • A \pm 1
  • B $\pm 1 / 25$
  • C $\pm 1 / 5$
  • D \pm 5
Solution:
1786 Upvotes Verified Answer
The correct answer is: $\pm 1 / 5$
Given, $A$ is a $3 \times 3$ matrix and $|5 \cdot \operatorname{Adj}(A)|=5$
$$
\begin{aligned}
& |5 \cdot \operatorname{adj}(A)|=5 \Rightarrow 5^3|\operatorname{adj}(A)|=5 \\
\Rightarrow & |\operatorname{adj}(A)|=\frac{1}{5^2} \Rightarrow|A|^{3-1}=\frac{1}{5^2} \\
\Rightarrow & \quad|A|^2=\left(\frac{1}{5}\right)^2 \Rightarrow|A|= \pm \frac{1}{5}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.