Search any question & find its solution
Question:
Answered & Verified by Expert
If $A$ is a matrix of order $3 \times 3$, then $\left(A^2\right)^{-1}$ is equal to
Options:
Solution:
2150 Upvotes
Verified Answer
The correct answer is:
$\left(A^{-1}\right)^2$
$\left(A^2\right)^{-1}=(A)^{-2}=\left(A^{-1}\right)^2=\left(-A^{-1}\right)^2=(-A)^{-2}$
$$
\left(A^2\right)^{-1} \neq A^2,\left(-A^2\right)^2
$$
$$
\left(A^2\right)^{-1} \neq A^2,\left(-A^2\right)^2
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.