Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A$ is a square matrix of order 3 , then $\left|\operatorname{Adj}\left(\operatorname{Adj} A^2\right)\right|=$
MathematicsMatricesTS EAMCETTS EAMCET 2023 (14 May Shift 1)
Options:
  • A $|A|^2$
  • B $|A|^4$
  • C $|A|^8$
  • D $|\mathrm{A}|^{16}$
Solution:
2143 Upvotes Verified Answer
The correct answer is: $|A|^8$
$\begin{aligned} & \text {}\left|\operatorname{adj}\left(\operatorname{adj} \mathrm{A}^2\right)\right|= \\ & |\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{n-1}=|\mathrm{A}|^2 \\ & \left|\operatorname{adj} \mathrm{A}^2\right|=|\operatorname{adj} \mathrm{A}|^2=\left(|\mathrm{A}|^2\right)^2-|\mathrm{A}|^4 \\ & \left|\operatorname{adj}\left(\operatorname{adj} \mathrm{A}^2\right)\right|=\left(|\mathrm{A}|^4\right)^{3-1} \\ & =\left(|\mathrm{A}|^4\right)^2=|\mathrm{A}|^8\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.