Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{A}$ is a square matrix, then the value of $\operatorname{adj} \mathrm{A}^{\mathrm{T}}-(\operatorname{adj} \mathrm{A})^{\mathrm{T}}$ is equal to
Options:
Solution:
1090 Upvotes
Verified Answer
The correct answer is:
null matrix whose order is same as that of A
We know, Adj $\mathrm{A}^{\mathrm{T}}=(\operatorname{adj} \mathrm{A})^{\mathrm{T}}$
$\therefore \mathrm{adj} \mathrm{A}^{\mathrm{T}}-(\mathrm{adj} \mathrm{A})^{\mathrm{T}}=\operatorname{adj} \mathrm{A}^{\mathrm{T}}-\mathrm{adj} \mathrm{A}^{\mathrm{T}}=0$
$\therefore \mathrm{adj} \mathrm{A}^{\mathrm{T}}-(\mathrm{adj} \mathrm{A})^{\mathrm{T}}=\operatorname{adj} \mathrm{A}^{\mathrm{T}}-\mathrm{adj} \mathrm{A}^{\mathrm{T}}=0$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.