Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If A is any $2 \times 2$ matrix such that $\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right] \mathrm{A}=\left[\begin{array}{cc}-1 & 0 \\ 6 & 3\end{array}\right]$
then what is A equal to?
MathematicsMatricesNDANDA 2007 (Phase 1)
Options:
  • A $\left[\begin{array}{ll}-5 & 1 \\ -2 & 2\end{array}\right]$
  • B $\left[\begin{array}{cc}-5 & -2 \\ 1 & 2\end{array}\right]$
  • C $\left[\begin{array}{cc}-5 & -2 \\ 2 & 1\end{array}\right]$
  • D $\left[\begin{array}{cc}5 & 2 \\ -2 & -1\end{array}\right]$
Solution:
1807 Upvotes Verified Answer
The correct answer is: $\left[\begin{array}{cc}-5 & -2 \\ 2 & 1\end{array}\right]$
Let $\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]=\mathrm{B}$
Then $\mathrm{BA}=\left[\begin{array}{cc}-1 & 0 \\ 6 & 3\end{array}\right]$
$\Rightarrow A=B^{-1}\left[\begin{array}{ll}-1 & 0 \\ -6 & 3\end{array}\right]$
$|\mathrm{B}|=3$
$\operatorname{adj} \mathrm{B}=\left[\begin{array}{cc}3 & -2 \\ 0 & 1\end{array}\right]$
$\mathrm{B}^{-1}=\frac{1}{3}\left[\begin{array}{rr}3 & -2 \\ 0 & 1\end{array}\right]$
$\Rightarrow \mathrm{A}=\frac{1}{3}\left[\begin{array}{rr}3 & -2 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}-1 & 0 \\ 6 & 3\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}-3-12 & -6 \\ 6 & 3\end{array}\right]$
$=\left[\begin{array}{rr}-5 & -2 \\ 2 & 1\end{array}\right]$
Aliter:
$\operatorname{Let} A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
then $\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]=\left[\begin{array}{ll}-1 & 0 \\ 6 & 3\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}\mathrm{a}+2 \mathrm{c} & \mathrm{b}+2 \mathrm{~d} \\ 0+3 \mathrm{c} & 0+3 \mathrm{~d}\end{array}\right]=\left[\begin{array}{ll}-1 & 0 \\ 6 & 3\end{array}\right]$
$\Rightarrow 3 \mathrm{c}=6$ or $\mathrm{c}=2$
$3 \mathrm{~d}=3$ or $\mathrm{d}=1$
$\mathrm{a}+2 \times 2=-1$ or $\mathrm{a}=-5$
$\mathrm{~b}+2 \times 1=0, \mathrm{~b}=-2$
So, $\mathrm{A}=\left[\begin{array}{cc}-5 & -2 \\ 2 & 1\end{array}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.