Search any question & find its solution
Question:
Answered & Verified by Expert
If a line $a x+2 y=k$ forms a triangle of area 3 sq. units with the coordinate axis and is perpendicular to the line $2 x-3 y+7=0$, then the product of all the possible values of $\mathrm{k}$ is
Options:
Solution:
2920 Upvotes
Verified Answer
The correct answer is:
$-36$
$a x+2 y=k$ is perpendicular to $2 x-3 y+7=0$
$$
\begin{aligned}
& \therefore m_1 \cdot m_2=-1 \\
& \frac{-a}{2} \times \frac{2}{3}=-1 \Rightarrow a=3
\end{aligned}
$$
$\therefore 3 x+2 y=k$ forms triangle of area 3 sq. units
$$
3 x+2 y=k
$$
$$
\frac{x}{\left(\frac{k}{3}\right)}+\frac{y}{\left(\frac{k}{2}\right)}=1
$$
$\operatorname{Ar}(\triangle \mathrm{OAB})=\left|\frac{1}{2} \times \mathrm{OA} \times \mathrm{OB}\right|=3$
$$
\begin{aligned}
& \therefore|\mathrm{OA} \times \mathrm{OB}|=6 \\
& \left|\frac{k}{3} \times \frac{k}{2}\right|=6 \Rightarrow k= \pm 6
\end{aligned}
$$
Product of values $=6 \times(-6)=-36$
$$
\begin{aligned}
& \therefore m_1 \cdot m_2=-1 \\
& \frac{-a}{2} \times \frac{2}{3}=-1 \Rightarrow a=3
\end{aligned}
$$
$\therefore 3 x+2 y=k$ forms triangle of area 3 sq. units
$$
3 x+2 y=k
$$
$$
\frac{x}{\left(\frac{k}{3}\right)}+\frac{y}{\left(\frac{k}{2}\right)}=1
$$
$\operatorname{Ar}(\triangle \mathrm{OAB})=\left|\frac{1}{2} \times \mathrm{OA} \times \mathrm{OB}\right|=3$
$$
\begin{aligned}
& \therefore|\mathrm{OA} \times \mathrm{OB}|=6 \\
& \left|\frac{k}{3} \times \frac{k}{2}\right|=6 \Rightarrow k= \pm 6
\end{aligned}
$$
Product of values $=6 \times(-6)=-36$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.