Search any question & find its solution
Question:
Answered & Verified by Expert
If a line $\mathrm{L}$ makes angles $\frac{\pi}{3}$ and $\frac{\pi}{4}$ with the positive $\mathrm{X}$-axis and positive $\mathrm{Y}$-axis respectively, then the angle made by $\mathrm{L}$ with the positive direction of $\mathrm{Z}$-axis is
Options:
Solution:
1318 Upvotes
Verified Answer
The correct answer is:
$\frac{\pi}{3}$
Given $\Rightarrow \alpha=\frac{\pi}{3}, \beta=\frac{\pi}{4}$ Also, we have
$$
\begin{aligned}
& \cos ^2 \alpha+\cos ^2 \beta+\cos ^2 \gamma=1 \\
& \Rightarrow \cos ^2 \frac{\pi}{3}+\cos ^2 \frac{\pi}{4}+\cos ^2 \gamma=1 \\
& \Rightarrow \frac{1}{4}+\frac{1}{2}+\cos ^2 \gamma=1 \\
& \Rightarrow \cos \gamma= \pm \frac{1}{2}
\end{aligned}
$$
For positive direction of $z$-axis
$$
\cos \gamma=\frac{1}{2} \Rightarrow \gamma=\frac{\pi}{3}
$$
$$
\begin{aligned}
& \cos ^2 \alpha+\cos ^2 \beta+\cos ^2 \gamma=1 \\
& \Rightarrow \cos ^2 \frac{\pi}{3}+\cos ^2 \frac{\pi}{4}+\cos ^2 \gamma=1 \\
& \Rightarrow \frac{1}{4}+\frac{1}{2}+\cos ^2 \gamma=1 \\
& \Rightarrow \cos \gamma= \pm \frac{1}{2}
\end{aligned}
$$
For positive direction of $z$-axis
$$
\cos \gamma=\frac{1}{2} \Rightarrow \gamma=\frac{\pi}{3}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.