Search any question & find its solution
Question:
Answered & Verified by Expert
If a line makes angle $\frac{\pi}{3}$ and $\frac{\pi}{4}$ with the $X$-axis and $Y$-axis respectively, then the angle made by the line with the $Z$-axis is
Options:
Solution:
2929 Upvotes
Verified Answer
The correct answer is:
$\frac{\pi}{3}$
We know that,
$\begin{array}{rlrl} & & \cos ^2 \alpha+\cos ^2 \beta+\cos ^2 \gamma=1 \\ \therefore & & \cos ^2 \frac{\pi}{3}+\cos ^2 \frac{\pi}{4}+\cos ^2 \gamma=1 \\ \Rightarrow & \left(\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{2}}\right)^2+\cos ^2 \gamma=1 \\ \Rightarrow & \cos ^2 \gamma=1-\frac{1}{4}-\frac{1}{2}=\frac{1}{4} \\ \Rightarrow & \cos \gamma=\frac{1}{2}=\cos \frac{\pi}{3} \\ \Rightarrow & \gamma=\frac{\pi}{3}\end{array}$
$\begin{array}{rlrl} & & \cos ^2 \alpha+\cos ^2 \beta+\cos ^2 \gamma=1 \\ \therefore & & \cos ^2 \frac{\pi}{3}+\cos ^2 \frac{\pi}{4}+\cos ^2 \gamma=1 \\ \Rightarrow & \left(\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{2}}\right)^2+\cos ^2 \gamma=1 \\ \Rightarrow & \cos ^2 \gamma=1-\frac{1}{4}-\frac{1}{2}=\frac{1}{4} \\ \Rightarrow & \cos \gamma=\frac{1}{2}=\cos \frac{\pi}{3} \\ \Rightarrow & \gamma=\frac{\pi}{3}\end{array}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.