Search any question & find its solution
Question:
Answered & Verified by Expert
If a line makes angles $\alpha, \beta, \gamma$ and $\delta$ with the four diagonals of a cube, then the value of $\sin ^2 \alpha+\sin ^2 \beta+\sin ^2 \gamma+\sin ^2 \delta$ is
Options:
Solution:
1971 Upvotes
Verified Answer
The correct answer is:
$\frac{8}{3}$
Given that, line makes angles $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube, then we know that
$\begin{aligned}
& \cos ^2 \alpha+\cos ^2 \beta+\cos ^2 \gamma+\cos ^2 \delta=\frac{4}{3} \\
& \text { Since, } \cos ^2 \theta=1-\sin ^2 \theta \\
& 1-\sin ^2 \alpha+1-\sin ^2 \beta+1-\sin ^2 \gamma+1-\sin ^2 \delta=\frac{4}{3} \\
& \therefore \quad \sin ^2 \alpha+\sin ^2 \beta+\sin ^2 \gamma+\sin ^2 \delta=4-\frac{4}{3}=\frac{8}{3}
\end{aligned}$
$\begin{aligned}
& \cos ^2 \alpha+\cos ^2 \beta+\cos ^2 \gamma+\cos ^2 \delta=\frac{4}{3} \\
& \text { Since, } \cos ^2 \theta=1-\sin ^2 \theta \\
& 1-\sin ^2 \alpha+1-\sin ^2 \beta+1-\sin ^2 \gamma+1-\sin ^2 \delta=\frac{4}{3} \\
& \therefore \quad \sin ^2 \alpha+\sin ^2 \beta+\sin ^2 \gamma+\sin ^2 \delta=4-\frac{4}{3}=\frac{8}{3}
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.