Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If a line makes angles $\tan ^{-1} \sqrt{7}, \tan ^{-1} \frac{\sqrt{5}}{\sqrt{3}}$ with $X$-axis, $Y$-axis respectively, then the angle made by it with $Z$-axis is
MathematicsThree Dimensional GeometryAP EAMCETAP EAMCET 2018 (23 Apr Shift 1)
Options:
  • A $\frac{\pi}{2}$
  • B $\frac{\pi}{6}$ or $\frac{5 \pi}{6}$
  • C $\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
  • D $\frac{\pi}{4}$ or $\frac{3 \pi}{4}$
Solution:
2378 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{4}$ or $\frac{3 \pi}{4}$
A line makes angle $\tan ^{-1} \sqrt{7}$ and $\tan ^{-1} \frac{\sqrt{5}}{\sqrt{3}}$ with $X$-axis and $Y$-axis respectively.
So,
Sc
$$
\begin{aligned}
& \alpha=\tan ^{-1} \sqrt{7} \\
& \tan \alpha=\sqrt{7} \\
& \Rightarrow \quad \cos \alpha=\frac{1}{\sqrt{8}} \\
& \text { and } \\
& \beta=\tan ^{-1} \frac{\sqrt{5}}{\sqrt{3}} \\
& \tan \beta=\frac{\sqrt{5}}{\sqrt{3}} \\
& \Rightarrow \quad \cos \beta=\frac{\sqrt{3}}{\sqrt{8}} \\
&
\end{aligned}
$$


Let angle make with $Z$-axis is $\gamma$. So,
$$
\begin{aligned}
& \cos ^2 \alpha+\cos ^2 \beta+\cos ^2 \gamma=1 \\
& \Rightarrow\left(\frac{1}{\sqrt{8}}\right)^2+\left(\frac{\sqrt{3}}{\sqrt{8}}\right)+\cos ^2 \gamma=1 \\
& \Rightarrow \quad \frac{4}{8}+\cos ^2 \gamma=1 \quad \Rightarrow \quad \frac{1}{2}+\cos ^2 \gamma=1
\end{aligned}
$$
$$
\begin{array}{lr}
\Rightarrow & \cos ^2 \gamma=\frac{1}{2} \\
\Rightarrow & \cos \gamma= \pm \frac{1}{\sqrt{2}} \\
\Rightarrow & \cos \gamma=\frac{1}{\sqrt{2}} \text { or } \frac{-1}{\sqrt{2}} \\
\Rightarrow & \gamma=\frac{\pi}{4} \text { or } \pi-\frac{\pi}{4} \\
\Rightarrow & \gamma=\frac{\pi}{4} \text { or } \frac{3 \pi}{4}
\end{array}
$$
So, angle made by line with $Z$-axis is $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.