Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If a matrix $A$ is such that
$3 A^{3}+2 A^{2}+5 A+I=0$
Then what is $A^{-1}$ equal to?
MathematicsMatricesNDANDA 2010 (Phase 2)
Options:
  • A $-\left(3 A^{2}+2 A+5\right)$
  • B $3 A^{2}+2 A+5 I$
  • C $3 A^{2}-2 A-5 I$
  • D $\left(3 A^{2}+2 A-5 I\right)$
Solution:
1475 Upvotes Verified Answer
The correct answer is: $-\left(3 A^{2}+2 A+5\right)$
Let A bea matrix such that $3 \mathrm{~A}^{3}+2 \mathrm{~A}^{2}+5 \mathrm{~A}+\mathrm{I}=0$
Post multiply by $\mathrm{A}^{-1}$ on both the sides, we get $3 \mathrm{~A}^{3} \mathrm{~A}^{-1}+2 \mathrm{~A}^{2} \mathrm{~A}^{-1}+5 \mathrm{AA}^{-1}+\mathrm{IA}^{-1}=0$
$\Rightarrow 3 \mathrm{~A}^{2}+2 \mathrm{~A}+5 \mathrm{I}+\mathrm{A}^{-1}=0$
$\Rightarrow \mathrm{A}^{-1}=-\left(3 \mathrm{~A}^{2}+2 \mathrm{~A}+5 \mathrm{I}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.