Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $a_n=\sqrt{7+\sqrt{7+\sqrt{7+\ldots .}}}$ having $\mathrm{n}$ radical signs then by methods of mathematical induciton which is true
MathematicsMathematical InductionJEE MainJEE Main 2002
Options:
  • A
    $a_n>7 \forall n \geq 1$
  • B
    $\mathrm{a}_{\mathrm{n}}>7 \forall \mathrm{n} \geq 1$
  • C
    $a_n < 4 \forall n \geq 1$
  • D
    $a_n < 3 \forall \mathrm{n} \geq 1$
Solution:
2588 Upvotes Verified Answer
The correct answer is:
$\mathrm{a}_{\mathrm{n}}>7 \forall \mathrm{n} \geq 1$
$\mathrm{a}_1=\sqrt{7} < 7$. Leta $_{\mathrm{m}} < 7$. Then $\mathrm{a}_{\mathrm{m}}+1=\sqrt{7+\mathrm{a}_{\mathrm{m}}} \Rightarrow \mathrm{a}_{\mathrm{m}+1}^2=7+\mathrm{a}_{\mathrm{m}} < 7+7 < 14$
$\Rightarrow \mathrm{a}_{\mathrm{m}+1} < \sqrt{14} < 7 ;$ So $\mathrm{a}_{\mathrm{n}} < 7 \forall \mathrm{n} \therefore \mathrm{a}_{\mathrm{n}}>3$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.