Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If An=sinnα+cosnα, then A1A4+A2A5=
MathematicsTrigonometric Ratios & IdentitiesTS EAMCETTS EAMCET 2018 (04 May Shift 1)
Options:
  • A A1A2+A4A5
  • B A1A6+A2A3
  • C A1A3+A2A6
  • D A1A2+A3A6
Solution:
1902 Upvotes Verified Answer
The correct answer is: A1A6+A2A3

Given that,

An=sin4α+cos4α

And

A1A4+A2A5=sinα+cosαsin4α+cos4α+sin2α+cos2αsin5α+cos5α

A1A4+A2A5=sinα+cosαsin4α+cos4α+sin5α+cos5α

Consider,

A1A6+A2A3=sinα+cosαsin6α+cos6α+sin2α+cos2αsin3α+cos3α

=sinα+cosαsin4αsin2α+cos4αcos2α+sin2α+cos2αsin3α+cos3α

=sinα+cosαsin4α1-cos2α+cos4α1-sin2α+sin3α+cos3α

=sinα+cosαsin4α-sin4αcos2α+cos4α-cos4αsin2α+sin3α+cos3α

=sinα+cosαsin4α+cos4α-sinα+cosαsin4αcos2α-sinα+cosαcos4αsin2α+sin3α+cos3α

=sinα+cosαsin4α+cos4α-sinα+cosαsin2αcos2αsin2α+cos2α+sin3α+cos3α

=sinα+cosαsin4α+cos4α-sinα+cosαsin2αcos2α+sin3α+cos3α

=sinα+cosαsin4α+cos4α-sin3αcos2α-cos3αsin2α+sin3α+cos3α

=sinα+cosαsin4α+cos4α+sin3α1-cos2α+cos3α1-sin2α

=sinα+cosαsin4α+cos4α+sin5α+cos5α

=A1A4+A2A5

 A1A4+A2A5=A1A6+A2A3

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.