Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\bar{a}=(p,-2,5)$ and $\bar{b}=(1, q,-3)$ are collinear vectors then
MathematicsVector AlgebraAP EAMCETAP EAMCET 2022 (06 Jul Shift 1)
Options:
  • A $p=\frac{5}{3}, q=\frac{6}{5}$
  • B $p=\frac{-5}{3}, q=\frac{-6}{5}$
  • C $p=\frac{5}{3}, q=\frac{-6}{5}$
  • D $p=\frac{-5}{3}, q=\frac{6}{5}$
Solution:
1377 Upvotes Verified Answer
The correct answer is: $p=\frac{-5}{3}, q=\frac{6}{5}$
Given vectors are $\vec{a}=p \hat{i}-2 \hat{j}+5 \hat{k}$ and $\vec{b}=p \hat{i}+q \hat{j}-3 \hat{k}$ According to questions, vectors are collineur.
$$
\begin{aligned}
& \overrightarrow{\mathrm{a}}=\lambda \overrightarrow{\mathrm{b}} \\
& (\hat{\mathrm{P}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})=\lambda(\hat{\mathrm{i}}+\mathrm{q} \hat{\mathrm{j}}-3 \hat{\mathrm{k}}) \\
& \mathrm{P} \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}=\lambda \hat{\mathrm{i}}+\mathrm{q} \lambda \hat{\mathrm{j}}-3 \lambda \hat{\mathrm{k}} \\
& \hat{\mathrm{i}}(\mathrm{p}-\lambda)+\hat{\mathrm{j}}(-2+\mathrm{q} \lambda)+\hat{\mathrm{k}}(5+3 \lambda)=0
\end{aligned}
$$
compare each comonent,
$$
\begin{aligned}
& 5+3 \lambda=0 \\
& \lambda=\frac{-5}{3} \\
& \Rightarrow \mathrm{P}=\lambda \\
& \mathrm{P}=\frac{-5}{3} \\
& \Rightarrow-\mathrm{q} \lambda-2=0 \\
& \mathrm{q}=\frac{-2}{\lambda}=\frac{-2 \times 3}{-5}=\frac{6}{5}
\end{aligned}
$$
So, $\mathrm{p}=\frac{-5}{3}, \mathrm{q}=\frac{6}{5}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.