Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If a perpendicular drawn through the vertex $O$ of the parabola $y^2=4 a x$ to any of its tangent meets the tangent at $N$ and the parabola at $M$, then $O N \cdot O M=$
MathematicsParabolaAP EAMCETAP EAMCET 2018 (22 Apr Shift 2)
Options:
  • A $4 a^2$
  • B $3 a^2$
  • C $2 a^2$
  • D $a^2$
Solution:
2815 Upvotes Verified Answer
The correct answer is: $4 a^2$
Let a point $P\left(a t^2, 2 a t\right)$ over the parabola $y^2=4 a x$. So, equation of tangent at point $P$ is


$\begin{aligned} & \text { So, points } N \equiv\left(-\frac{a t^2}{1+t^2}, \frac{a t^3}{1+t^2}\right) \\ & \text { and } \quad M \equiv\left(\frac{4 a}{t^2},-\frac{4 a}{t}\right)\end{aligned}$
So, $\begin{aligned} O N \cdot O M & =\sqrt{\frac{a^2 t^4}{\left(1+t^2\right)^2}+\frac{a^2 t^6}{\left(1+t^2\right)^2}} \times \sqrt{\frac{16 a^2}{t^4}+\frac{16 a^2}{t^2}} \\ & =\frac{4 a^2 t^2}{t\left(1+t^2\right)} \sqrt{1+t^2} \sqrt{\frac{1}{t^2}+1}=4 a^2 .\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.