Search any question & find its solution
Question:
Answered & Verified by Expert
If a plane meets the axes $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ in $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively such that centroid of $\triangle \mathrm{ABC}$ is $(1,2,3)$, then the equation of the plane is
Options:
Solution:
1166 Upvotes
Verified Answer
The correct answer is:
$\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1$
Let $A=(x, 0,0) ; B=(0, y, 0) ; C=(0,0, z)$ Centroid of $\triangle A B C$ is $(1,2,3)$
$$
\therefore \frac{\mathrm{x}}{3}=1, \frac{\mathrm{y}}{3}=2, \frac{\mathrm{z}}{3}=3 \Rightarrow(\mathrm{x}, \mathrm{y}, \mathrm{z})=(3,6,9)
$$
Hence equation of required plane is
$$
\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1
$$
$$
\therefore \frac{\mathrm{x}}{3}=1, \frac{\mathrm{y}}{3}=2, \frac{\mathrm{z}}{3}=3 \Rightarrow(\mathrm{x}, \mathrm{y}, \mathrm{z})=(3,6,9)
$$
Hence equation of required plane is
$$
\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.