Search any question & find its solution
Question:
Answered & Verified by Expert
If a pressure of \(8 \times 10^8 \mathrm{~N} \mathrm{~m}^{-2}\) is applied to a lead block, so that its volume reduces by \(20 \%\). The Bulk modulus of lead block is
Options:
Solution:
2253 Upvotes
Verified Answer
The correct answer is:
\(4 \times 10^9 \mathrm{Nm}^{-2}\)
Pressure applied on the block,
\(p=8 \times 10^8 \mathrm{Nm}^{-2}\)
If \(V_1\) be initial volume, then final volume of block,
\(\begin{aligned}
& V_2=V_1-20 \% \text { of } V_1=V_1-\frac{20}{100} V_1 \\
& V_2=\frac{4}{5} V_1
\end{aligned}\)
\(\therefore\) Change in volume,
\(\Delta V=V_1-V_2=V_1-\frac{4}{5} V_1 \Rightarrow=\frac{V_1}{5}\)
\(\therefore\) Bulk modulus,
\(\begin{aligned}
B & =\frac{p}{\Delta V / V}=\frac{p V}{\Delta V}=\frac{8 \times 10^8 \times V_1}{V_1 / 5} \\
& =4 \times 10^9 \mathrm{Nm}^{-2}
\end{aligned}\)
\(p=8 \times 10^8 \mathrm{Nm}^{-2}\)
If \(V_1\) be initial volume, then final volume of block,
\(\begin{aligned}
& V_2=V_1-20 \% \text { of } V_1=V_1-\frac{20}{100} V_1 \\
& V_2=\frac{4}{5} V_1
\end{aligned}\)
\(\therefore\) Change in volume,
\(\Delta V=V_1-V_2=V_1-\frac{4}{5} V_1 \Rightarrow=\frac{V_1}{5}\)
\(\therefore\) Bulk modulus,
\(\begin{aligned}
B & =\frac{p}{\Delta V / V}=\frac{p V}{\Delta V}=\frac{8 \times 10^8 \times V_1}{V_1 / 5} \\
& =4 \times 10^9 \mathrm{Nm}^{-2}
\end{aligned}\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.