Search any question & find its solution
Question:
Answered & Verified by Expert
If a random variable \(X\) takes the values \(x_1, x_2, x_3, \ldots, x_{100}\) with probability \(P\left(X=x_i\right)=\) \(K i(i+1)\), then \(200 K=\)
Options:
Solution:
1314 Upvotes
Verified Answer
The correct answer is:
\(\frac{1}{1717}\)
It is given that for random variable \(X\) which can take values \(x_1, x_2, x_3, \ldots . ., x_{100}\) with probability \(P\left(x=x_i\right)=K i(i+1)\)
\(\begin{aligned}
& \because \quad \sum_{i=1}^{100} P\left(X=x_i\right)=1 \Rightarrow K \sum_{i=1}^{100} i(i+1)=1 \\
& \Rightarrow \quad K \sum_{i=1}^{100}\left(i^2+i\right)=1 \\
& \Rightarrow \quad K\left[\frac{100(100+1)(200+1)}{6}+\frac{100(100+1)}{2}\right]=1 \\
& \Rightarrow \quad K \frac{100 \times 101}{6}[201+3]=1 \\
& \Rightarrow \quad K=\frac{6}{100 \times 101 \times 204}[201+3]=1 \\
& \therefore 200 K=200 \times \frac{6}{100 \times 101 \times 204}=\frac{1}{101 \times 17}=\frac{1}{1717}
\end{aligned}\)
Hence, option (b) is correct.
\(\begin{aligned}
& \because \quad \sum_{i=1}^{100} P\left(X=x_i\right)=1 \Rightarrow K \sum_{i=1}^{100} i(i+1)=1 \\
& \Rightarrow \quad K \sum_{i=1}^{100}\left(i^2+i\right)=1 \\
& \Rightarrow \quad K\left[\frac{100(100+1)(200+1)}{6}+\frac{100(100+1)}{2}\right]=1 \\
& \Rightarrow \quad K \frac{100 \times 101}{6}[201+3]=1 \\
& \Rightarrow \quad K=\frac{6}{100 \times 101 \times 204}[201+3]=1 \\
& \therefore 200 K=200 \times \frac{6}{100 \times 101 \times 204}=\frac{1}{101 \times 17}=\frac{1}{1717}
\end{aligned}\)
Hence, option (b) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.