Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If a ray of light in denser medium strikes a rarer medium at angle of incidence $i$, the angles of reflection and refraction are $r$ and $r^{\prime}$ respectively. If the reflected and refracted rays are at right angles to each other, the critical angle for the given pair of media is
PhysicsRay OpticsMHT CETMHT CET 2023 (09 May Shift 2)
Options:
  • A $\sin ^{-1}\left(\tan r^{\prime}\right)$
  • B $\tan ^{-1}(\sin \mathrm{i})$
  • C $\sin ^{-1}(\tan r)$
  • D $\cot ^{-1}(\tan \mathrm{i})$
Solution:
2544 Upvotes Verified Answer
The correct answer is: $\tan ^{-1}(\sin \mathrm{i})$


According to Snell's Law,
$\begin{array}{ll}
& \frac{\sin i}{\sin r}=\frac{1}{n} \\
& \text { But } i=r, \\
\therefore \quad & \frac{\sin r}{\sin r^{\prime}}=\frac{1}{n} \\
& \text { From figure } r^{\prime}+r+90=180^{\circ} \\
\therefore \quad & r^{\prime}=180^{\circ}-90^{\circ}-r=90^{\circ}-r \\
\therefore \quad & \Rightarrow \frac{\sin r}{\sin \left(90^{\circ}-r\right)}=\frac{1}{n} \\
& \frac{\sin r}{\cos r}=\frac{1}{n}
\end{array}$
$\therefore \quad \tan \mathrm{r}=\frac{1}{\mathrm{n}}$
Critical angle is given by $\sin i_c=\frac{1}{n}$
$\begin{array}{ll}
\therefore & \tan r=\sin i_c \\
\therefore & i_c=\sin ^{-1}(\tan r)
\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.