Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A=\left[\begin{array}{cc}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]$ and $A+A^{-1}=I$, then $\alpha=$
MathematicsMatricesAP EAMCETAP EAMCET 2022 (06 Jul Shift 2)
Options:
  • A 0
  • B $\frac{\pi}{3}$
  • C $\frac{\pi}{6}$
  • D $\frac{\pi}{4}$
Solution:
2768 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{6}$
Given, $\begin{aligned} A & =\left[\begin{array}{cc}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right] \\ \text { Adj } A & =\left[\begin{array}{cc}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha\end{array}\right] \\ |A| & =\sin ^2 \alpha+\cos ^2 \alpha=1 \\ A^{-1} & =\left[\begin{array}{cc}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha\end{array}\right] \\ A+A^{-1} & =\left[\begin{array}{cc}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]+\left[\begin{array}{cc}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha\end{array}\right] \\ & =\left[\begin{array}{cc}2 \sin \alpha & 0 \\ 0 & 2 \sin \alpha\end{array}\right] \\ A+A^{-1} & =I, \text { if } 2 \sin \alpha=1 \\ \sin \alpha & =\frac{1}{2} \Rightarrow \alpha=\frac{\pi}{6}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.