Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If a square matrix $A$ is such that $\left(A^T-\frac{1}{2} I\right)\left(A-\frac{1}{2} I\right)$ $=\left(A^T+\frac{1}{2} I\right)\left(A+\frac{1}{2} I\right)=I$, where $I$ is a unit matrix, then $A$ is
MathematicsMatricesAP EAMCETAP EAMCET 2021 (24 Aug Shift 1)
Options:
  • A symmetric matrix
  • B equal to $\frac{3}{4}$ ।
  • C skew-symmetric matrix
  • D equal to $\frac{-3}{4}$ ।
Solution:
2824 Upvotes Verified Answer
The correct answer is: skew-symmetric matrix
$$
\begin{aligned}
\text { Given, } & \left(A^T-\frac{1}{2} I\right)\left(A-\frac{1}{2} I\right) \\
= & \left(A^T+\frac{1}{2} I\right)\left(A+\frac{1}{2} I\right)=I
\end{aligned}
$$
Taking starting two, we get
$$
\begin{aligned}
& A^T A-\frac{1}{2} A^T I-\frac{1}{2} I A+\frac{1}{4} I^2=A^T A+\frac{1}{2} A^T I+\frac{1}{2} I A \\
& +\frac{1}{4} I^2 \\
& \Rightarrow-\frac{1}{2} A^T-\frac{1}{2} A=\frac{1}{2} A^T+\frac{1}{2} A
\end{aligned}
$$
[U sing cancellation law) and $I A=I$ ]
$$
\begin{aligned}
\Rightarrow & & 0 & =\frac{1}{2} A^{\mathrm{T}}+\frac{1}{2} A^T+\frac{1}{2} A+\frac{1}{2} A \\
& & & =A^T+A \\
\Rightarrow & & A^T & =-A
\end{aligned}
$$
$\Rightarrow A$ is skew-symmetric matrix.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.