Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If a tangent to the circle x2+y2=1 intersects the coordinate axes at distinct points P and Q, then the locus of the mid-point of PQ is:
MathematicsCircleJEE MainJEE Main 2019 (09 Apr Shift 1)
Options:
  • A x2+y216x2y2=0
  • B x2+y24x2y2=0
  • C x2+y22xy=0
  • D x2+y22x2y2=0
Solution:
1242 Upvotes Verified Answer
The correct answer is: x2+y24x2y2=0

Any point on the circle x2+y2=r2 is rcosθ, rsinθ and the equation of the tangent at this point is xcosθ+ysinθ=r.

Thus, any point on circle x2+y2=1 is cosθ, sinθ and the equation of tangent at this point is xcosθ+ysinθ=1.

To find the point where this line intersects the x-axis, put y=0,x=1cosθ 

P=1cosθ, 0

And, to find the point where this line intersects the y-axis, put x=0, 

y=1sinθ 

Q=0, 1sinθ

The mid-point of a line segment joining the points x1, y1 and x2, y2 is x1+x22, y1+y22

Let, midpoint of PQ is h, k

 h, k=12cosθ, 12sinθ

 h=12cosθ & k=12sinθ

cosθ=12h &  sinθ=12k

 sin2θ+cos2θ=1

 14h2+14k2=1

1h2+1k2=4

To get the locus of the required point, replace h, k by x, y

 Locus is 1x2+1y2=4

x2+y24x2y2=0.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.