Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A=\left[\begin{array}{lll}x & 2 & 1 \\ 2 & x & 1 \\ 2 & 1 & 0\end{array}\right]$ and $\operatorname{det}\left(A^3\right)=125$, then $x=$
MathematicsMatricesAP EAMCETAP EAMCET 2022 (07 Jul Shift 1)
Options:
  • A $1 / 3$
  • B $3$
  • C $-\frac{1}{3}$
  • D $-3$
Solution:
1585 Upvotes Verified Answer
The correct answer is: $1 / 3$
$|A|=\left|\begin{array}{lll}x & 2 & 1 \\ 2 & x & 1 \\ 2 & 1 & 0\end{array}\right|=x(0-1)-2(0-2)+1(2-2 x)$
$=6-3 x$
According to question, $\left|A^3\right|=125$
$\Rightarrow \quad|A|^3=5^3 \quad\left[\because\left|A^3\right|=|A|^3\right]$
$\begin{aligned} \Rightarrow & & |A| & =5 \\ \Rightarrow & & 6-3 x & =5 \\ \Rightarrow & & x & =1 / 3\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.