Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If ax2+2hxy+by2=0, then d2ydx2=
MathematicsDifferentiationTS EAMCETTS EAMCET 2020 (09 Sep Shift 1)
Options:
  • A h2-abhx+by3
  • B 2h2-abhx+by3
  • C hx+by3h2-ab
  • D 0
Solution:
1250 Upvotes Verified Answer
The correct answer is: 0

Given, ax2+2hxy+by2=0

Now, differentiating both the sides with respect to x

2ax+2h(y+xdydx)+2bydydx=0

2hxdydx+2bydydx+2ax+2hy=0

2dydx(hx+by)=-2(ax+hy)

dydx=-ax+hyhx+by  ...1

Now, again differentiating with respect to x

d2ydx2=-a+hdydx(hx+by)-h+bdydx(ax+hy)(hx+by)2

d2ydx2=-ahx+h2dydxx+aby+bhdydxy-ahx+abdydxx+h2y+hbydydx(hx+by)2

d2ydx2=-(ab-h2)y+(h2-ab)xdydx(hx+by)2

d2ydx2=-(ab-h2)y-xdydx(hx+by)2

Now, put dydx=-ax+hy(hx+by)

d2ydx2=-ab-h2y-x-ax+hy(hx+by)(hx+by)2

d2ydx2=-ab-h2ax2+2hxy+by2(hx+by)2

As given ax2+2hxy+by2=0

So, d2ydx2=0

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.