Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $a x^2+2 h x y+b y^2=3$, then $\frac{d^2 y}{d x^2}=$
MathematicsDifferentiationTS EAMCETTS EAMCET 2019 (04 May Shift 2)
Options:
  • A $\frac{\left(h x^2+b y+a x\right)}{(a x+h y)^2}$
  • B $\frac{\left(a x y+h x^2+b y x\right)}{(a x+b y)^2}$
  • C $\frac{3\left(h^2-a b\right)}{(h x+b y)^3}$
  • D $\frac{(a b+h)^2}{(a x+h y)^2}\left[h\left(x^2+y^2\right)+x y(a+b)\right]$
Solution:
1247 Upvotes Verified Answer
The correct answer is: $\frac{3\left(h^2-a b\right)}{(h x+b y)^3}$
We have,
$$
a x^2+2 h x y+b y^2=3
$$

On differentiating with respect to $x$, we get
$$
\begin{aligned}
& 2 a x+2 h x \frac{d y}{d x}+2 h y+2 b y \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=-\frac{(a x+h y)}{(b y+h x)}
\end{aligned}
$$

Again differentiating with respect to $x$, we get
$$
\begin{aligned}
& 2 a+2 h x \frac{d^2 y}{d x^2}+2 h \frac{d y}{d x}+2 h \frac{d y}{d x}+2 b\left(\frac{d y}{d x}\right)^2 \\
&+2 b y \frac{d^2 y}{d x^2}=0
\end{aligned}
$$
$$
\begin{aligned}
& \frac{d^2 y}{d x^2}(h x+b y)=-\left(a+2 h \frac{d y}{d x}+b\left(\frac{d y}{d x}\right)^2\right) \\
& \frac{d^2 y}{d x^2}(h x+b y)= \\
&-\left(a+2 h\left(\frac{-a x-h y}{h x+b y}\right)+b\left(\frac{-a x-h y}{h x+b y}\right)^2\right)
\end{aligned}
$$
$\frac{d^2 y}{d x^2}(h x+b y)=-$
$$
\left[\frac{a(h x+b y)^2-2 h(a x+h y)(h x+b y)+b(a x+h y)^2}{(h x+b y)^2}\right]
$$
$$
\frac{d^2 y}{d x^2}=\frac{3\left(h^2-a b\right)}{(h x+b y)^3}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.