Search any question & find its solution
Question:
Answered & Verified by Expert
If $\int \frac{x}{(a+x)^5} d x=\frac{1}{k(a+x)^4}(f(x))+c$ then $\frac{f(-a)}{a k}=$
Options:
Solution:
2609 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{4}$
$\begin{aligned} & \text { Let } u=x+a \\ & d u=d x \\ & \int \frac{u-a}{u^5} d u=\int \frac{1}{u^4} d u-\int \frac{a}{u^5} d u \\ & =\frac{1}{3 u^3}+\frac{a}{4 u^4}+C=\frac{-4 u+3 a}{12 u^4}+C=\frac{-4(x+a)+3 a}{12(x+a)^4}+C \\ & =\frac{1}{12(x+a)^4}(-4 x-a)+C \\ & f(x)=-4 x-a \Rightarrow k=12 \\ & \therefore \quad \frac{f(-a)}{a k}=\frac{-4(-a)-a}{12 a}=\frac{3 a}{12 a}=\frac{1}{4} .\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.