Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $a=x+\sqrt{x^{2}+1}$, then what is $x$ equal to?
MathematicsQuadratic EquationNDANDA 2008 (Phase 2)
Options:
  • A $(1 / 2)\left(a+a^{-1}\right)$
  • B $(1 / 2)\left(a-a^{-1}\right)$
  • C $a+a^{-1}$
  • D $a=a^{-}$
Solution:
1719 Upvotes Verified Answer
The correct answer is: $(1 / 2)\left(a-a^{-1}\right)$
$\begin{aligned} & a=x+\sqrt{x^{2}+1} \Rightarrow a-x=\sqrt{x^{2}+1} \\ & \Rightarrow x^{2}+1=(a-x)^{2} \Rightarrow x^{2}+1=a^{2}+x^{2}-2 a x \\ & \Rightarrow 2 a x=a^{2}-1 \Rightarrow 2 x=a-\frac{1}{a} \\ & \Rightarrow x=\frac{1}{2}\left(a-a^{-1}\right) \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.