Search any question & find its solution
Question:
Answered & Verified by Expert
If \(A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4\end{array}\right]\) and \(B=A^3\), then \(B^{-1}=\)
Options:
Solution:
2476 Upvotes
Verified Answer
The correct answer is:
\(\left[\begin{array}{ccc}\frac{1}{27} & 0 & 0 \\ 0 & \frac{1}{125} & 0 \\ 0 & 0 & \frac{1}{64}\end{array}\right]\)
The given matrix \(A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4\end{array}\right]\) and
\(\begin{aligned}
B & =A^3=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
9 & 0 & 0 \\
0 & 25 & 0 \\
0 & 0 & 16
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 4
\end{array}\right]=\left[\begin{array}{ccc}
27 & 0 & 0 \\
0 & 125 & 0 \\
0 & 0 & 64
\end{array}\right] \\
\therefore & \\
B^{-1} & =\frac{1}{27 \times 125 \times 64}\left[\begin{array}{ccc}
125 \times 64 & 0 & 0 \\
0 & 27 \times 64 & 0 \\
0 & 0 & 527 \times 125
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{1}{27} & 0 & 0 \\
0 & \frac{1}{125} & 0 \\
0 & 0 & \frac{1}{64}
\end{array}\right]
\end{aligned}\)
Hence, option (c) is correct.
\(\begin{aligned}
B & =A^3=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
9 & 0 & 0 \\
0 & 25 & 0 \\
0 & 0 & 16
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 4
\end{array}\right]=\left[\begin{array}{ccc}
27 & 0 & 0 \\
0 & 125 & 0 \\
0 & 0 & 64
\end{array}\right] \\
\therefore & \\
B^{-1} & =\frac{1}{27 \times 125 \times 64}\left[\begin{array}{ccc}
125 \times 64 & 0 & 0 \\
0 & 27 \times 64 & 0 \\
0 & 0 & 527 \times 125
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{1}{27} & 0 & 0 \\
0 & \frac{1}{125} & 0 \\
0 & 0 & \frac{1}{64}
\end{array}\right]
\end{aligned}\)
Hence, option (c) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.