Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \( \alpha \) and \( \beta \) are two different comlex numbers with \( |\beta|=1 \), then \( \left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right| \) is equal to
MathematicsThree Dimensional GeometryKCETKCET 2014
Options:
  • A 1
  • B \( 11 \)
  • C \( \frac{1}{2} \)
  • D \( -1 \)
Solution:
2826 Upvotes Verified Answer
The correct answer is: \( 11 \)
We have, \( |\beta|=1 \)
We know that \( |z|^{2}=(z)(\bar{z}) \)
Thus, \[ \begin{array}{l}\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|^{2}=\left(\frac{\beta-\alpha}{1-\alpha \beta}\right)\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right) \\ =\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right)\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right) \\ =\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|^{2}\left(\frac{\bar{\beta}-\bar{\alpha}}{\overline{1}-\overline{\bar{\alpha}} \bar{\beta}}\right) \\ \text { since, } \bar{\alpha}=\alpha\end{array} \]
and conjugate of \( 1 \) is \( 1 \). So,
\[
\begin{aligned}
&\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right)\left(\frac{\bar{\beta}-\bar{\alpha}}{1-\alpha \bar{\beta}}\right)=\frac{(\beta-\alpha)(\bar{\beta}-\bar{\alpha})}{(1-\bar{\alpha} \beta)(1-\alpha \bar{\beta})} \\
=& \frac{\beta(\bar{\beta}-\bar{\alpha})-\alpha(\beta-\bar{\alpha})}{1(1-\alpha \bar{\beta}-\bar{\alpha} \beta(1-\alpha \bar{\beta})} \\
=& \frac{\beta \bar{\beta}-\beta \alpha-\alpha \bar{\beta}+\alpha \bar{\alpha}}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+\alpha \bar{\alpha} \beta \bar{\beta}} \\
\text { As } &|z|^{2}=(z)(\bar{z}) \\
=& \frac{|\beta|^{2}-\beta \bar{\alpha}-\bar{\beta} \alpha+|\alpha|^{2}}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+|\alpha|^{2}|\beta|^{2}} \\
\text { Given }|\beta|=1 \\
=& \frac{1-\beta \bar{\alpha}-\bar{\beta} \alpha+|\alpha|^{2}}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+|\alpha|^{2} \cdot 1}=\frac{1-\beta \bar{\alpha}-\bar{\beta} \alpha+|\alpha|^{2}}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+|\alpha|^{2}}=1
\end{aligned}
\]

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.