Search any question & find its solution
Question:
Answered & Verified by Expert
If \(\alpha, \beta\) are the roots of \(x^2+b x+c=0, \gamma, \delta\) are the roots of \(x^2+b_1 x+c_1=0\) and \(\gamma < \alpha < \delta < \beta\), then \(\left(c-c_1\right)^2 < \)
Options:
Solution:
2654 Upvotes
Verified Answer
The correct answer is:
\(\left(b_1-b\right)\left(b c_1-b_1 c\right)\)
According to given informations after drawing figure.

For \(x\)-coordinate of point \(P\), on subtracting given quadratic equations, we get
\(\begin{aligned}
x^2+b_1 x+c_1 & =0 \\
x^2+b x+c & =0
\end{aligned}\)
\(\begin{aligned} & \left(b_1-b\right) x+\left(c_1-c\right)=0 \\ & \Rightarrow x=\left(\frac{c-c_1}{b_1-b}\right) \\ & \end{aligned}\)
Now, with respect to quadratic expression
\(\begin{gathered}
f(x)=x^2+b x+c \\
f\left(x=\frac{c-c_1}{b_1-b}\right) < 0 \\
\Rightarrow\left(\frac{c-c_1}{b_1-b}\right)^2+b\left(\frac{c-c_1}{b_1-b}\right)+c < 0 \\
\Rightarrow\left(c-c_1\right)^2 < b\left(c_1-c\right)\left(b_1-b\right)-c\left(b_1-b\right)^2 \\
\Rightarrow\left(c-c_1\right)^2 < \left(b_1-b\right)\left[b c_1-b c-c b_1+c b\right] \\
\Rightarrow\left(c-c_1\right)^2 < \left(b_1-b\right)\left(b c_1-c b_1\right)
\end{gathered}\)
Hence, option (1) is correct.

For \(x\)-coordinate of point \(P\), on subtracting given quadratic equations, we get
\(\begin{aligned}
x^2+b_1 x+c_1 & =0 \\
x^2+b x+c & =0
\end{aligned}\)
\(\begin{aligned} & \left(b_1-b\right) x+\left(c_1-c\right)=0 \\ & \Rightarrow x=\left(\frac{c-c_1}{b_1-b}\right) \\ & \end{aligned}\)
Now, with respect to quadratic expression
\(\begin{gathered}
f(x)=x^2+b x+c \\
f\left(x=\frac{c-c_1}{b_1-b}\right) < 0 \\
\Rightarrow\left(\frac{c-c_1}{b_1-b}\right)^2+b\left(\frac{c-c_1}{b_1-b}\right)+c < 0 \\
\Rightarrow\left(c-c_1\right)^2 < b\left(c_1-c\right)\left(b_1-b\right)-c\left(b_1-b\right)^2 \\
\Rightarrow\left(c-c_1\right)^2 < \left(b_1-b\right)\left[b c_1-b c-c b_1+c b\right] \\
\Rightarrow\left(c-c_1\right)^2 < \left(b_1-b\right)\left(b c_1-c b_1\right)
\end{gathered}\)
Hence, option (1) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.