Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \(\alpha\) is the angle between two vectors \(\mathbf{p}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and \(\mathbf{q}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\), then \(\sin (\alpha)=\)
MathematicsVector AlgebraAP EAMCETAP EAMCET 2020 (18 Sep Shift 1)
Options:
  • A \(\sqrt{\frac{145}{156}}\)
  • B \(\sqrt{\frac{135}{156}}\)
  • C \(\sqrt{\frac{155}{156}}\)
  • D \(\sqrt{\frac{165}{156}}\)
Solution:
2368 Upvotes Verified Answer
The correct answer is: \(\sqrt{\frac{155}{156}}\)
If \(\alpha\) is an acute angle between vectors \(p\) and \(q\), then
\(\begin{aligned}
\operatorname{Sin} \alpha & =\frac{|\mathbf{p} \times \mathbf{q}|}{|\mathbf{p}||\mathbf{q}|}=\frac{\sqrt{(4-1)^2+(-3-2)^2+(-3-8)^2}}{\sqrt{9+16+1} \sqrt{4+1+1}} \\
& =\frac{\sqrt{9+25+121}}{\sqrt{156}}=\sqrt{\frac{155}{156}}
\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.