Search any question & find its solution
Question:
Answered & Verified by Expert
If an electron has an energy such that its de-Broglie wavelength is $5500 Å$, then the energy value of that electron is $\left(h=6.6 \times 10^{-34} \mathrm{Js}, m_{\mathrm{c}}=9.1 \times 10^{-31} \mathrm{~kg}\right)$
Options:
Solution:
1955 Upvotes
Verified Answer
The correct answer is:
$8 \times 10^{-25} \mathrm{~J}$
de-Broglie wavelength
$$
\begin{aligned}
\lambda & =\frac{h}{\sqrt{2 m E}} \\
E & =\frac{1}{2 m}\left(\frac{h}{\lambda}\right)^2
\end{aligned}
$$
$$
\begin{aligned}
& =\frac{1}{2 \times 9.1 \times 10^{-31}}\left(\frac{6.625 \times 10^{-34}}{5.5 \times 10^{-7}}\right)^2 \\
& =\frac{1}{18.2 \times 10^{-31}} \times 1.45 \times 10^{-54} \\
& =8 \times 10^{-25} \mathrm{~J}
\end{aligned}
$$
$$
\begin{aligned}
\lambda & =\frac{h}{\sqrt{2 m E}} \\
E & =\frac{1}{2 m}\left(\frac{h}{\lambda}\right)^2
\end{aligned}
$$
$$
\begin{aligned}
& =\frac{1}{2 \times 9.1 \times 10^{-31}}\left(\frac{6.625 \times 10^{-34}}{5.5 \times 10^{-7}}\right)^2 \\
& =\frac{1}{18.2 \times 10^{-31}} \times 1.45 \times 10^{-54} \\
& =8 \times 10^{-25} \mathrm{~J}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.