Search any question & find its solution
Question:
Answered & Verified by Expert
If $\alpha$ and $\beta$ are different complex numbers with $|\beta|=1$, then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$
Solution:
2377 Upvotes
Verified Answer
Consider $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|^2=\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right)\left(\frac{\overline{\beta-\alpha}}{1-\bar{\alpha} \beta}\right)$
$\begin{aligned}
&=\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right)\left(\frac{\bar{\beta}-\bar{\alpha}}{1-\alpha \bar{\beta}}\right) \quad\left(\because|\mathrm{z}|^2=z . \bar{z}\right) \\
&=\frac{\beta \bar{\beta}-\bar{\alpha} \beta-\alpha \bar{\beta}+\alpha \bar{\alpha}}{1-\bar{\alpha} \beta-\alpha \bar{\beta}+(\alpha \bar{\alpha})(\beta \bar{\beta})}=\frac{|\beta|^2-\bar{\alpha} \beta-\alpha \bar{\beta}+|\alpha|^2}{1-\bar{\alpha} \beta-\alpha \bar{\beta}+|\alpha|^2|\beta|^2}
\end{aligned}$
But $|\beta|^2=1$
$\therefore\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|^2=\frac{1-\alpha \bar{\beta}-\bar{\alpha} \beta+|\alpha|^2}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+|\alpha|^2}=1 \text {. }$
Hence $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=1$
$\begin{aligned}
&=\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right)\left(\frac{\bar{\beta}-\bar{\alpha}}{1-\alpha \bar{\beta}}\right) \quad\left(\because|\mathrm{z}|^2=z . \bar{z}\right) \\
&=\frac{\beta \bar{\beta}-\bar{\alpha} \beta-\alpha \bar{\beta}+\alpha \bar{\alpha}}{1-\bar{\alpha} \beta-\alpha \bar{\beta}+(\alpha \bar{\alpha})(\beta \bar{\beta})}=\frac{|\beta|^2-\bar{\alpha} \beta-\alpha \bar{\beta}+|\alpha|^2}{1-\bar{\alpha} \beta-\alpha \bar{\beta}+|\alpha|^2|\beta|^2}
\end{aligned}$
But $|\beta|^2=1$
$\therefore\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|^2=\frac{1-\alpha \bar{\beta}-\bar{\alpha} \beta+|\alpha|^2}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+|\alpha|^2}=1 \text {. }$
Hence $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=1$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.