Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\alpha$ and $\beta$ are the roots of the equation $1+\mathrm{x}+\mathrm{x}^{2}=0$, then
the matrix product $\left[\begin{array}{cc}1 & \beta \\ \alpha & \alpha\end{array}\right]\left[\begin{array}{cc}\alpha & \beta \\ 1 & \beta\end{array}\right]$ is equal to
MathematicsQuadratic EquationNDANDA 2017 (Phase 2)
Options:
  • A $\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$
  • B $\left[\begin{array}{cc}-1 & -1 \\ -1 & 2\end{array}\right]$
  • C $\left[\begin{array}{lr}1 & -1 \\ -1 & 2\end{array}\right]$
  • D $\left[\begin{array}{ll}-1 & -1 \\ -1 & -2\end{array}\right]$
Solution:
2836 Upvotes Verified Answer
The correct answer is: $\left[\begin{array}{cc}-1 & -1 \\ -1 & 2\end{array}\right]$
$\alpha, \beta$ are roots of the equation $1+x+x^{2}=0$. $1+x+x^{2}=0 \Rightarrow x^{2}+x+1=0$
Solving for $x, x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{1^{2}-4(1)(1)}}{2(1)}$
$=\frac{-1 \pm \sqrt{-3}}{2}=\frac{-1 \pm \sqrt{3} \mathrm{i}}{2}$
$\therefore$ roots are $\frac{-1 \pm \sqrt{3} \mathrm{i}}{2}$ and $\frac{-1-\sqrt{3} \mathrm{i}}{2}$
i.e., $\alpha=\mathrm{a}, \beta=\omega^{2}$
$\left[\begin{array}{ll}1 & \beta \\ \alpha & \alpha\end{array}\right]\left[\begin{array}{ll}\alpha & \beta \\ 1 & \beta\end{array}\right]=\left[\begin{array}{cc}\alpha+\beta & \beta+\beta^{2} \\ \alpha^{2}+\alpha & \alpha \beta+\alpha \beta\end{array}\right]$
$=\left[\begin{array}{ll}\omega+\omega^{2} & \omega^{2}+\omega^{4} \\ \omega^{2}+\omega & \omega^{3}+\omega^{3}\end{array}\right]$
$=\left[\begin{array}{cc}-1 & \omega^{2}+\omega \\ -1 & 2 \omega^{3}\end{array}\right]$
$=\left[\begin{array}{cc}-1 & -1 \\ -1 & 2\end{array}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.