Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\alpha$ and $\beta$ are the roots of the equation $x^{2}+b x+c=0$, then what is the value of $\alpha^{-1}+\beta^{-1} ?$
MathematicsQuadratic EquationNDANDA 2013 (Phase 1)
Options:
  • A $-\frac{b}{c}$
  • B $\frac{\mathrm{b}}{\mathrm{c}}$
  • C $\frac{\mathrm{c}}{\mathrm{b}}$
  • D $-\frac{\mathrm{c}}{\mathrm{b}}$
Solution:
1678 Upvotes Verified Answer
The correct answer is: $-\frac{b}{c}$
Consider $\alpha^{-1}+\beta^{-1}=\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}$
Equation is $x^{2}+b x+c=0$
Now, sum of roots $=\alpha+\beta=-b$
and product of roots $=\alpha \cdot \beta=\mathrm{c}$
$\frac{\alpha+\beta}{\alpha \beta}=-\frac{\mathrm{b}}{\mathrm{c}}$
Hence, $\alpha^{-1}+\beta^{-1}=-\frac{\mathrm{b}}{\mathrm{c}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.