Search any question & find its solution
Question:
Answered & Verified by Expert
If $\alpha$ and $\beta$ are the roots of the equation $x^2-x+1=0$, then $\alpha^{2009}+\beta^{2009}=$
Options:
Solution:
1210 Upvotes
Verified Answer
The correct answer is:
1
1
$x^2-x+1=0 \quad \Rightarrow x=\frac{1 \pm \sqrt{1-4}}{2}$
$x=\frac{1 \pm \sqrt{3} i}{2}$
$\alpha=\frac{1}{2}+i \frac{\sqrt{3}}{2}, \quad \beta=\frac{1}{2}-\frac{i \sqrt{3}}{2}$
$\alpha=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}, \quad \beta=\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}$
$\alpha^{2009}+\beta^{2009}=2 \cos 2009\left(\frac{\pi}{3}\right)$
$=2 \cos \left[668 \pi+\pi+\frac{2 \pi}{3}\right]=2 \cos \left(\pi+\frac{2 \pi}{3}\right)$
$=-2 \cos \frac{2 \pi}{3}=-2\left(-\frac{1}{2}\right)=1$
$x=\frac{1 \pm \sqrt{3} i}{2}$
$\alpha=\frac{1}{2}+i \frac{\sqrt{3}}{2}, \quad \beta=\frac{1}{2}-\frac{i \sqrt{3}}{2}$
$\alpha=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}, \quad \beta=\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}$
$\alpha^{2009}+\beta^{2009}=2 \cos 2009\left(\frac{\pi}{3}\right)$
$=2 \cos \left[668 \pi+\pi+\frac{2 \pi}{3}\right]=2 \cos \left(\pi+\frac{2 \pi}{3}\right)$
$=-2 \cos \frac{2 \pi}{3}=-2\left(-\frac{1}{2}\right)=1$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.