Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\alpha, \beta$ and $\gamma$ are the roots of $x^{3}+a x^{2}+b=0$, then the value of $\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|$ is
MathematicsDeterminantsVITEEEVITEEE 2011
Options:
  • A $-a^{3}$
  • B $a^{3}-3 b$
  • C $a^{3}$
  • D $a^{2}-3 b$
Solution:
1155 Upvotes Verified Answer
The correct answer is: $a^{3}$
$\alpha, \beta, \gamma$ are the roots of given equation, Therefore $\alpha+\beta+\gamma=-\mathrm{a}$ $\alpha \beta+\beta \gamma+\gamma \alpha=0$ and $\alpha \beta \gamma=-\mathrm{b}$ Now, $\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|=-(\alpha+\beta+\gamma)$ $\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right)$ $=-(\alpha+\beta+\gamma)\left[(\alpha+\beta+\gamma)^{2}\right.$ $\left.=-(-\mathrm{a})\left(\mathrm{a}^{2}-0\right)=\mathrm{a}^{3} \quad-3(\alpha \beta+\beta \gamma+\gamma \alpha)\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.