Search any question & find its solution
Question:
Answered & Verified by Expert
If $\alpha, \beta$ and $\gamma$ are the roots of $x^{3}+a x^{2}+b=0$, then the value of $\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|$ is
Options:
Solution:
1155 Upvotes
Verified Answer
The correct answer is:
$a^{3}$
$\alpha, \beta, \gamma$ are the roots of given equation, Therefore $\alpha+\beta+\gamma=-\mathrm{a}$ $\alpha \beta+\beta \gamma+\gamma \alpha=0$ and $\alpha \beta \gamma=-\mathrm{b}$ Now, $\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|=-(\alpha+\beta+\gamma)$ $\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right)$ $=-(\alpha+\beta+\gamma)\left[(\alpha+\beta+\gamma)^{2}\right.$ $\left.=-(-\mathrm{a})\left(\mathrm{a}^{2}-0\right)=\mathrm{a}^{3} \quad-3(\alpha \beta+\beta \gamma+\gamma \alpha)\right]$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.