Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\theta+\phi=\alpha$ and $\tan \theta=\mathrm{k} \tan \phi$ (where $\mathrm{K}>1)$, then the value of $\sin (\theta-\phi)$ is
MathematicsTrigonometric Ratios & IdentitiesMHT CETMHT CET 2021 (21 Sep Shift 2)
Options:
  • A $\mathrm{k} \tan \phi$
  • B $\sin \alpha$
  • C $\left(\frac{\mathrm{k}-1}{\mathrm{k}+1}\right) \sin \alpha$
  • D $\mathrm{k} \cos \phi$
Solution:
1281 Upvotes Verified Answer
The correct answer is: $\left(\frac{\mathrm{k}-1}{\mathrm{k}+1}\right) \sin \alpha$
We have $\tan \theta=\mathrm{k} \tan \phi$ and $\theta+\phi=\alpha$
$$
\therefore \frac{\tan \theta}{\tan \phi}=\frac{k}{1}
$$
By Componendo Dividendo, we get
$$
\begin{aligned}
& \frac{\tan \theta+\tan \phi}{\tan \theta-\tan \phi}=\frac{\mathrm{k}+1}{\mathrm{k}-1} \\
& \therefore \frac{\frac{\sin \theta}{\cos \theta}+\frac{\sin \phi}{\cos \phi}}{\frac{\sin \theta}{\cos \theta}-\frac{\sin \phi}{\cos \phi}}=\frac{k+1}{k-1} \\
& \therefore \frac{\sin \cos \phi+\cos \theta \sin \phi}{\sin \theta \cos \phi-\cos \theta \sin \phi}=\frac{k+1}{k-1} \\
& \therefore \frac{\sin (\theta+\phi)}{\sin (\theta-\phi)}=\frac{\mathrm{k}+1}{\mathrm{k}-1} \Rightarrow \frac{\sin \alpha}{\sin (\theta-\phi)}=\frac{\mathrm{k}+1}{\mathrm{k}-1} \\
& \therefore \sin (\theta-\phi)=\frac{\mathrm{k}-1}{\mathrm{k}+1}(\sin \alpha) \\
&
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.