Search any question & find its solution
Question:
Answered & Verified by Expert
If angle between the vectors $\bar{a}=2 \lambda 2 \hat{i}+4 \lambda \hat{j}+\widehat{k}$ and $\bar{b}=7 \hat{i}-2 \hat{j}+\lambda \widehat{k} i$ obtuse, then the values of $\lambda$ lie in
Options:
Solution:
2742 Upvotes
Verified Answer
The correct answer is:
$\left(0, \frac{1}{2}\right)$

Angle between $\vec{a}$ and $\vec{b}$ is obtuse
$\begin{aligned} & \Rightarrow(2 \lambda 2 \hat{i}+4 \lambda \hat{j}+\widehat{k}) \cdot(7 \hat{i}-2 \hat{j}+\lambda \widehat{k})<0 \\ & \Rightarrow 14 \lambda^2-8 \lambda+\lambda<0 \\ & \Rightarrow 7 \lambda(2 \lambda-1)<0 \\ & \Rightarrow \lambda \in\left(0, \frac{1}{2}\right)\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.