Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\alpha, \beta, \gamma$ are real numbers such that $\left(\frac{7}{3}+\beta\right) \bar{i}-\bar{j}+(\alpha+\gamma) \bar{k}=\frac{5}{3}(\alpha \bar{i}+\bar{j}-\bar{k})+\beta(2 \bar{j}+\bar{k})+(\bar{i}+\gamma \bar{j}+3 \bar{k}), \text { then } 5 \alpha-9 \beta+13 \gamma=$
MathematicsVector AlgebraTS EAMCETTS EAMCET 2022 (20 Jul Shift 2)
Options:
  • A 4
  • B 12
  • C 0
  • D 15
Solution:
1117 Upvotes Verified Answer
The correct answer is: 12
$\begin{aligned}
& \therefore\left(\frac{7}{3}+\beta\right) \hat{\mathrm{i}}-\hat{\mathrm{j}}+(\alpha+\gamma) \hat{\mathrm{k}}=\frac{5}{3}(\alpha \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}) \\
& +\mathrm{B}(2 \hat{\mathrm{j}}+\hat{\mathrm{k}})+(\hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \\
& \Rightarrow\left(\frac{7}{3}+\beta\right) \hat{\mathrm{i}}-\hat{\mathrm{j}}+(\alpha+\gamma) \hat{\mathrm{k}}=\left(\frac{5}{3} \alpha+1\right) \hat{\mathrm{i}} \\
& +\left(\frac{5}{3}+2 \beta+\gamma\right) \hat{\mathrm{j}}+\left(\frac{-5}{3}+\beta+3\right) \hat{\mathrm{k}}
\end{aligned}$
comparing both sides, we get
$\begin{aligned}
& \frac{7}{3}+\beta=\frac{5}{3} \alpha+1 \Rightarrow 5 \alpha-3 \beta=4 \\
& -1=\frac{5}{3}+2 \beta+\gamma \Rightarrow 2 \beta+\gamma=\frac{-8}{3} \\
& \alpha+\gamma=\frac{-5}{3}+\beta+3 \Rightarrow \alpha-\beta+\gamma=\frac{4}{3}
\end{aligned}$
solving equations (i), (ii), and (iii), we get
$\begin{aligned}
& \alpha=0, \beta=\frac{-4}{3}, \gamma=0 \\
& \therefore 5 \alpha-9 \beta+13 \gamma=12
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.