Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\alpha, \beta, \gamma$ are the roots of the equation $5 x^3-2 x-4=0$, then $\alpha^3+\beta^3+\gamma^3=$
MathematicsQuadratic EquationTS EAMCETTS EAMCET 2022 (19 Jul Shift 1)
Options:
  • A $\frac{12}{5}$
  • B $\frac{18}{29}$
  • C 4
  • D -4
Solution:
1727 Upvotes Verified Answer
The correct answer is: $\frac{12}{5}$
Given quadratic equation $5 x^3-2 x-4=0$.
Here, $a=5, b=0, c=-2, d=-4$ and $\alpha, \beta, \gamma$ are roots of equation.
$\begin{aligned}
& \alpha+\beta+\gamma=\frac{-b}{a}=0 \\
& \alpha \beta \gamma=\frac{-d}{a}=\frac{-(-4)}{5}=\frac{4}{5} \\
& \alpha^3+\beta^3+\gamma^3=(\alpha+\beta+\gamma)\left(\alpha^2+\beta^2+\gamma^2-\alpha \beta-\beta \gamma-\gamma \alpha\right)+3 \alpha \beta \gamma \\
& =(0) \cdot\left(\alpha^2+\beta^2+\gamma^2-\alpha \beta-\beta \gamma-\gamma \alpha\right)+3 \times- \\
& \alpha^3+\beta^3+\gamma^3=\frac{12}{5}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.