Search any question & find its solution
Question:
Answered & Verified by Expert
If $\alpha, \beta, \gamma$ are the roots of the equation $x^3+a x^2+b x+c=0$, then $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$ is equal to
Options:
Solution:
1648 Upvotes
Verified Answer
The correct answer is:
$-\frac{b}{c}$
Let $\alpha, \beta, \gamma$ are roots of equation
$$
\begin{aligned}
& x^3+a x^2+b x+c=0 \\
& \alpha+\beta+\gamma=-a \\
& \therefore \quad \alpha \beta+\beta \gamma+\gamma \alpha=b \\
& \text { Now, } \alpha^{-1}+\beta^{-1}+\gamma^{-1}=\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} \\
&=\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma}=\frac{b}{-c}=-\frac{b}{c}
\end{aligned}
$$
$$
\begin{aligned}
& x^3+a x^2+b x+c=0 \\
& \alpha+\beta+\gamma=-a \\
& \therefore \quad \alpha \beta+\beta \gamma+\gamma \alpha=b \\
& \text { Now, } \alpha^{-1}+\beta^{-1}+\gamma^{-1}=\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} \\
&=\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma}=\frac{b}{-c}=-\frac{b}{c}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.