Search any question & find its solution
Question:
Answered & Verified by Expert
If $\alpha, \beta, \gamma$ are the roots of $x^3+2 x^2-3 x-1=0$ then $\alpha^{-2}+\beta^{-2}+\gamma^{-2}=$
Options:
Solution:
2348 Upvotes
Verified Answer
The correct answer is:
13
If $\alpha, \beta, \gamma$ are the roots of $x^3+2 x^2-3 x-1=0$ then $\alpha^{-2}+\beta^{-2}+\gamma^{-2}=$


On squaring equation (ii), we get
$\begin{aligned}
& \alpha^2 \beta^2+\beta^2 \gamma^2+\gamma^2 \alpha^2+2 \alpha \beta \gamma(\alpha+\beta+\gamma)=9 \\
& \Rightarrow \alpha^2 \beta^2+\beta^2 \gamma^2+\gamma^2 \alpha^2=9-2(1)(-2)=13
\end{aligned}$
Now
$\begin{aligned}
& \alpha^{-2}+\beta^{-2}+\gamma^{-2}=\frac{\beta^2 \gamma^2+\gamma^2 \alpha^2+\alpha^2 \beta^2}{(\alpha \beta \gamma)^2} \\
& \alpha^{-2}+\beta^{-2}+\gamma^{-2}=\frac{13}{1}=13
\end{aligned}$


On squaring equation (ii), we get
$\begin{aligned}
& \alpha^2 \beta^2+\beta^2 \gamma^2+\gamma^2 \alpha^2+2 \alpha \beta \gamma(\alpha+\beta+\gamma)=9 \\
& \Rightarrow \alpha^2 \beta^2+\beta^2 \gamma^2+\gamma^2 \alpha^2=9-2(1)(-2)=13
\end{aligned}$
Now
$\begin{aligned}
& \alpha^{-2}+\beta^{-2}+\gamma^{-2}=\frac{\beta^2 \gamma^2+\gamma^2 \alpha^2+\alpha^2 \beta^2}{(\alpha \beta \gamma)^2} \\
& \alpha^{-2}+\beta^{-2}+\gamma^{-2}=\frac{13}{1}=13
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.