Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \ldots \mathrm{c}{15}$ are the Binomial co-efficients in the expansion of $(1+\mathrm{x})^{15}$, then the value of $\frac{\mathrm{C}{1}}{\mathrm{c}{0}}+2 \frac{\mathrm{C}{2}}{\mathrm{c}{1}}+3 \frac{\mathrm{c}{3}}{\mathrm{c}{2}}+\ldots \ldots+15 \frac{\mathrm{c}{15}}{\mathrm{c}{14}}$ is
Options:
Solution:
2984 Upvotes
Verified Answer
The correct answer is:
120
Hint:
$S_{n}=\sum_{r=1}^{15} r \frac{{ }^{15} C_{r}}{{ }^{15} c_{r-1}}=\sum_{r=1}^{15}(15-r+1)=16 \times 15-\frac{15 \times 16}{2}=120$
$S_{n}=\sum_{r=1}^{15} r \frac{{ }^{15} C_{r}}{{ }^{15} c_{r-1}}=\sum_{r=1}^{15}(15-r+1)=16 \times 15-\frac{15 \times 16}{2}=120$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.