Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{C}(20, \mathrm{n}+2)=\mathrm{C}(20, \mathrm{n}-2)$, then what is $\mathrm{n}$ equal to ?
MathematicsBinomial TheoremNDANDA 2019 (Phase 1)
Options:
  • A 8
  • B 10
  • C 12
  • D 16
Solution:
1097 Upvotes Verified Answer
The correct answer is: 10
Given, $\mathrm{C}(20, \mathrm{n}+2)=\mathrm{C}(20, \mathrm{n}-2)$
$\Rightarrow{ }^{20} \mathrm{C}_{\mathrm{n}+2}={ }^{20} \mathrm{C}_{\mathrm{n}-2}$
$\Rightarrow 20=\mathrm{n}+2+\mathrm{n}-2 \quad\left(\because{ }^{n} c_{r}={ }^{n} c_{s} \Rightarrow n=r+s\right)$
$\Rightarrow 20=2 \mathrm{n}$
$\Rightarrow \mathrm{n}=10$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.