Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $C_j={ }^n C_j$, then $C_0 C_r+C_1 C_{r+1}+C_2 C_{r+2}+\ldots+C_{n-r} C_n=$
MathematicsBinomial TheoremAP EAMCETAP EAMCET 2023 (15 May Shift 2)
Options:
  • A $\frac{(2 n) !}{(n-2 r) !(n+2 r) !}$
  • B $\frac{(2 n) !}{(n-r) !(n+r) !}$
  • C $2 \mathrm{n}_{\mathrm{C}_{\mathrm{r}}}$
  • D $2 n_{C_{r+1}}$
Solution:
1074 Upvotes Verified Answer
The correct answer is: $\frac{(2 n) !}{(n-r) !(n+r) !}$
$\begin{aligned}
& \text {Since }(1+x)^{2 n}=(1+x)^n(x+1)^n \\
& \Rightarrow(1+x)^{2 n}=\left(C_0+C_1 x+C_2 x^2+\ldots+C_n x^n\right) \\
& \left(C_0 x^n+C_1 x^{n-1}+C_2 x^{n-2}+\ldots+C_n\right)
\end{aligned}$
Now equation co-efficient of $x^{n-r}$ on both side
$\Rightarrow C_0 C_r+C_1 C_{r+1}+C_2 C_{r+2}+\ldots+C_{n-r} C_n={ }^{2 n} C_{n+r}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.