Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\cos ^{-1}\left(\frac{x^2-y^2}{x^2+y^2}\right)=\sin ^{-1}(a)$ then $\frac{d y}{d x}$ is equal to
MathematicsDifferentiationAP EAMCETAP EAMCET 2020 (22 Sep Shift 1)
Options:
  • A $y / x$
  • B $-y / x$
  • C $x / y$
  • D $-x / y$
Solution:
1376 Upvotes Verified Answer
The correct answer is: $y / x$
Given, $\cos ^{-1}\left(\frac{x^2-y^2}{x^2+y^2}\right)=\sin ^{-1} a$
$$
\Rightarrow \quad \frac{x^2-y^2}{x^2+y^2}=\cos \left(\sin ^{-1} a\right)=c
$$

On applying componendo and dividendo law, we get
$$
\frac{2 x^2}{2 y^2}=\frac{c+1}{1-c} \Rightarrow \frac{y^2}{x^2}=\frac{1-c}{1+c}
$$

On differentiating both sides w.r.t ' $x$ ', we get
$$
2 x^2 y \frac{d y}{d x}-2 y^2 x=0 \Rightarrow \frac{d y}{d x}=\frac{y}{x}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.